The Effect of Imbalanced Carrier Transport on the Efficiency Droop in GaInN-Based Blue and Green Light-Emitting Diodes
نویسندگان
چکیده
The effect of strongly-imbalanced carrier concentration and mobility on efficiency droop is studied by comparing the onset voltage of high injection, the onset current density of the droop, and the magnitude of the droop, as well as their temperature dependence, of GaInN-based blue and green light-emitting diodes (LEDs). An n-to-p asymmetry factor is defined as σn/σp, and was found to be 17.1 for blue LEDs and 50.1 for green LEDs. Green LEDs, when compared to blue LEDs, were shown to enter the high-injection regime at a lower voltage, which is attributed to their less favorable p-type transport characteristics. Green LEDs, with lower hole concentration and mobility, have a lower onset current density of the efficiency droop and a higher magnitude of the efficiency droop when compared to blue LEDs. The experimental results are in quantitative agreement with the imbalanced carrier transport causing the efficiency droop, thus providing guidance for alleviating the phenomenon of efficiency droop.
منابع مشابه
Degradation mechanism beyond device self-heating in high power light-emitting diodes
Related Articles Temperature-dependence of the internal efficiency droop in GaN-based diodes Appl. Phys. Lett. 99, 181127 (2011) Localized surface plasmon-enhanced electroluminescence from ZnO-based heterojunction light-emitting diodes Appl. Phys. Lett. 99, 181116 (2011) Performance enhancement of blue light-emitting diodes with AlGaN barriers and a special designed electronblocking layer J. Ap...
متن کاملSuppression of electron overflow and efficiency droop in N-polar GaN green light emitting diodes
In this letter, we experimentally demonstrate direct correlation between efficiency droop and carrier overflow in InGaN/GaN green light emitting diodes (LEDs). Further, we demonstrate flat external quantum efficiency curve up to 400 A/cm in a plasma assisted molecular beam epitaxy grown N-polar double quantum well LED without electron blocking layers. This is achieved by exploring the superior ...
متن کاملEffective suppression of efficiency droop in GaN-based light-emitting diodes: role of significant reduction of carrier density and built-in field
A critical issue in GaN-based high power light-emitting diodes (LEDs) is how to suppress the efficiency droop problem occurred at high current injection while improving overall quantum efficiency, especially in conventional c-plane InGaN/GaN quantum well (QW), without using complicated bandgap engineering or unconventional materials and structures. Although increasing thickness of each QW may d...
متن کاملJunction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes
متن کامل
Efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes with nonuniform current spreading
We demonstrate that the efficiency droop phenomenon in multiple quantum well InGaN/GaN light-emitting diodes (LEDs) may be connected to the current crowding effect. A numerical model of internal quantum efficiency calculation is presented that takes into account nonuniform lateral carrier injection in the active region. Based on this model, we examine the effect of current crowding on the effic...
متن کامل